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Abstract. Despite some design limitations, CNNs have been largely
adopted by the computer vision community due to their efficacy and
versatility. Introduced by Sabour et al. to circumvent some limitations
of CNNs, capsules replace scalars with vectors to encode appearance
feature representation, allowing better preservation of spatial relation-
ships between whole objects and its parts. They also introduced the
dynamic routing mechanism, which allows to weight the contributions
of parts to a whole object differently at each inference step. Recently,
Hinton et al. have proposed to solely encode pose information to model
such part-whole relationships. Additionally, they used a matrix instead
of a vector encoding in the capsules framework. In this work, we in-
troduce several improvements to the capsules framework, allowing it to
be applied for multi-label semantic segmentation. More specifically, we
combine pose and appearance information encoded as matrices into a
new type of capsule, i.e. Matwo-Caps. Additionally, we propose a novel
routing mechanism, i.e. Dual Routing, which effectively combines these
two kinds of information. We evaluate our resulting Matwo-CapsNet on
the JSRT chest X-ray dataset by comparing it to SegCaps, a capsule
based network for binary segmentation, as well as to other CNN based
state-of-the-art segmentation methods, where we show that our Matwo-
CapsNet achieves competitive results, while requiring only a fraction of
the parameters of other previously proposed methods.

Keywords: capsules network, convolutional neural network, chest X-
ray, multi-label, semantic segmentation

1 Introduction

Widely adopted by the computer vision and medical image analysis communi-
ties, convolutional neural networks (CNNs) have enabled huge progress in many
applications related to these areas, e.g. image classification, computer aided di-
agnostics or semantic segmentation [5, 6]. However, CNNs also suffer from some
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Fig. 1: Overview of our proposed multi-label semantic segmentation method,
which incorporates Matwo-Caps consisting of a matrix P encoding pose infor-
mation and a matrix A encoding appearance information.

limitations by design. Firstly, its formulation with consecutive convolution com-
bined with pooling layers does not readily support the preservation of spatial
dependencies of object parts in relation to the whole object. Especially in se-
mantic segmentation applications, such dependencies may be crucial to encode
constraints regarding anatomical information with the minimal amount of pa-
rameters, e.g. composing an X-ray image of the thorax by left and right lung
structures as well as the heart, which are all anatomically constrained by each
other in their relative locations. Secondly, CNNs max-pooling operation addi-
tionally leads not only to a loss of fine spatial information, but also potentially
discards relevant information. Thirdly, the scalar representation of feature ac-
tivations extracted with a CNN obscures its interpretability, which participates
to the CNNs ”black box” nature. Tackling these problems, Sabour et al. [10]
proposed to replace scalar representations of feature activations with vectors en-
coding the feature instantiations, i.e. capsules [2]. Differently from CNNs, these
capsules are coupled through dynamically calculated weights in each forward
pass. This optimization mechanism, i.e. dynamic routing [10], allows to weight
the contributions of parts to a whole object differently not just during training
but also during inference. This interesting concept of capsule based networks has
been mainly adapted for image classification applications, however, it has never
been shown to be in line or go beyond state-of-the-art results. Moreover, up to
now the capability of capsules being used for semantic segmentation has only
been shown on binary segmentation tasks [4].

In this work we introduce Matwo-CapsNet, a multi-label semantic segmen-
tation network that is based on the concept of capsules. Our proposed capsule
network extends upon the related work as follows: Firstly, differently from the
vector encoding of feature instantiations from [10], in our work we use a matrix
encoding instead. Secondly, we combine this matrix encoding of feature instan-
tiations from [10] with pose information inside each capsule. Although the use
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of the pose information encoded as a matrix has been proposed in [3], it has not
yet been combined with feature information. Thirdly, to combine feature and
pose information when learning spatial dependencies between capsules, we also
propose a novel attention mechanism called Dual Routing. Finally, we extend
the capsule network architecture from [4] to the multi-label segmentation task.

2 Method

Different to CNNs, where each object is represented as a scalar, capsule networks
allow rich feature description by representing objects as vectors. Additionally,
capsule networks are based on the hypothesis that a complex object (i.e. parent
capsule) can be described through a weighted contribution of simpler objects (i.e.
child capsules) after they are transformed into the feature space of the complex
object. In the dynamic routing procedure, weights are dynamically calculated
such that they correspond to the agreement of each transformed child capsule
being a part of the complex parent capsule.

Thus, for each child-parent combination, a matrix Ti→n of size N ×N that
transforms the child vector vi of size N to the parent vector vn of size N needs
to be learned. Although in most of the previous works, capsules are represented
as vectors, in [3] appearance encoding is replaced with a matrix Pi describing
the object’s pose.

Matwo-Capsule In this work, we combine these two concepts of representing
an object by both appearance and pose, each having its own transformation
matrix from child i to parent n. We encode as a matrix not just the pose P,
but also the appearance features A, see Fig. 1. Thus, for the same number
of transformation parameters (N × N), we extend the representation of the
appearance features A from a vector of size N to a matrix of size N ×N . The
transformations of the child i pose Pi as well as appearance Ai matrices to the
parent n matrices Pi→n and Ai→n are defined as

Pi→n = PiT
P
i→n and Ai→n = (Ai + bi→n)TA

i→n, (1)

where bi→n is a learned bias for the appearance matrix Ai. T
A
i→n and TP

i→n are
the transformation matrices for appearance and pose, respectively. Same as the
coordinate addition step in [3], we combine image coordinates x, y with each TP.

In order to create the pose Pn and appearance matrix An of the parent
capsule, the transformed matrices of all of its children need to be combined, i.e.,

Pn = Psquash

(∑
i

αi→nPi→n

)
and An = squash

(∑
i

αi→nAi→n

)
, (2)

where Psquash and squash are non-linear functions used to bound the values
between −1 and 1. While we use the squash function as proposed in [10] for
appearance matrices, we propose to use Psquash(P) = P

max(abs(P)) , a special
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Fig. 2: Our proposed Matwo-CapsNet architecture for multi-label segmentation.
The number of capsules in each layer is indicated below the respective layer.

squashing function dedicated to pose matrices. The weighting factor αi→n of (2)
defines how much each child contributes to the parent and is defined during the
routing procedure.

Dual-Routing The dynamic routing mechanism of [10] follows an iterative
optimization strategy based on the cross correlation between vectors of child
and parent capsules to define their agreement ci→n. We extend this concept
in our Dual Routing mechanism by treating the pose and appearance features
separately before combining them via multiplication, i.e.,

ci→n = 〈Pi→n,Pn〉F · 〈Ai→n,An〉F, (3)

where 〈·, ·〉F denotes the Frobenius inner product. Finally, the weighting fac-
tors αi→n for each child of equation (2) are calculated by applying the sigmoid
function to ci→n.

Matwo-CapsNet Architecture We extend the SegCaps network architec-
ture [4] for multi-label segmentation and integrate our Matwo-Caps into our
proposed Matwo-CapsNet, see Fig. 2. Similarly as in SegCaps, for each pixel
(x, y) of either the input image or the intermediate layers, a set of Matwo-Caps
is defined, i.e. Pi(x, y) and Ai(x, y). To incorporate local neighborhood infor-
mation inside of our Matwo-CapsNet, a convolution kernel of size k × k (see
Fig. 2) is learned for the pose and appearance matrices Pi and Ai. The pre-
dicted multi-label segmentation L at each location (x, y) corresponds to the
index of the capsule of the last layer with the highest activation, i.e.,

L(x, y) = arg max
i

(‖Pi(x, y)‖F · ‖Ai(x, y)‖F). (4)
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3 Experimental Setup and Results

Dataset We evaluate our Matwo-CapsNet on the Japanese Society of Radio-
logical Technology (JSRT) dataset [11]. The JSRT dataset consists of 247 chest
radiographs with a resolution of 2048 × 2048 and a pixel size of 0.175mm. The
groundtruth segmentation labels were provided by van Ginneken et al. [1], who
manually annotated left and right lungs, left and right clavicles and the heart,
leading to six labels including the background. We split the JSRT dataset into
two equally sized training and testing sets. Due to memory limitations, all im-
ages are scaled to a resolution of 128×128 pixels. As intensity preprocessing, the
input images are rescaled such that the pixels of each image are within -1 and
1. To prevent overfitting, we apply random data augmentation in the form of
spatial (translation, scaling, rotation, elastic deformations) and intensity (shift,
scaling) transformations on the input images, as described in [8].

Evaluated Networks To ensure a fair comparison between capsule networks
and CNNs, we also evaluate our implementation of the state-of-the-art U-Net [9]
segmentation architecture. Differently to the original U-Net, we exchanged the
deconvolution operations with linear upsampling, reduced the number of inter-
mediate convolution outputs to 16, and reduced the number of levels to 4, leading
to the approximate same number of parameters as our proposed Matwo-CapsNet.
As a loss function, we use a pixel-wise softmax cross entropy.

We compare our proposed Matwo-CapsNet1 with the SegCaps network [4],
which was originally proposed for binary segmentation. We used the author’s
implementation from their source code repository2 and reimplemented it in our
network training framework to be consistent with our data augmentation. We
also extend SegCaps to multi-label segmentation by increasing the number of
output capsules from one to six. Furthermore, we increase the capacity of the
multi-label SegCaps by having at least six capsules at any given layer, as well as
increasing the length of the feature vector of each capsule to be at least N = 32.
Different to [4], we do not incorporate a reconstruction loss and adapt SegCaps to
the multi-label segmentation task by replacing the weighted binary cross-entropy
loss with either a weighted softmax cross-entropy loss or a weighted spread loss.

To evaluate different contributions of our Matwo-CapsNet, we introduce two
additional variants of the network, in which we replace the appearance matrix
with a vector and use either dynamic routing as proposed by [10] (MatVec-
CapsNet Or) or our proposed Dual Routing (MatVec-CapsNet Dr). All our net-
works use the spread loss function.
Training our Matwo-CapsNet on the JSRT dataset with an NVidia Titan XP
equipped with 12 GB RAM takes approximately 45 hours, while testing one
image requires approximately one second.

1 Our code is available at https://github.com/savinienb/Matwo-CapsNet
2 https://github.com/lalonderodney/SegCaps
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Table 1: The multi-label Dice scores of the evaluated networks in % on the JSRT
dataset. The used loss function for each of our networks is shown within brackets.
Number of network parameters are shown as multiples of thousands.

Network #Params
Lungs Clavicles

Heart
L R L R

U-Net (Softmax) 42K 97.36 97.87 90.87 90.64 94.49

SegCaps (weighted Softmax) 2,129K 21.18 35.79 4.49 2.93 32.83

SegCaps (weighted Spread) 2,129K 30.74 0 0.06 0 23.23

MatVec-CapsNet Or (Spread) 43K 95.57 96.43 82.89 82.56 92.37

MatVec-CapsNet Dr (Spread) 43K 96.60 97.15 86.41 86.38 93.42

Matwo-CapsNet (Spread) 43K 97.01 97.45 88.32 87.82 94.37

U-Net [7] 31,000K 96.4 83.4 93.4

InvertedNet [7] 3,141K 96.6 88.9 94.0

Results To verify that the original SegCaps-Net implementation is working
within our augmentation and training framework, we evaluated SegCaps-Net on
a binary task using the JSRT dataset, where the foreground object is defined
as both left and right lungs and background as everything else. The results
of this experiment show a Dice score of 95.38% for the foreground object. As
outcome of our multi-label segmentation experiments, in Table 1 we show results
in terms of multi-label Dice scores for the U-Net, our multi-label adaptations of
the SegCaps-Net, and different variants of our proposed network, together with
the state-of-the-art segmentation method for this dataset [7]. Note that different
evaluation setups are used in [7]. Qualitative results are shown in Fig. 3, where
the first row shows results where both U-Net and Matwo-CapsNet perform very
well. The other rows show more challenging examples, where errors from the two
methods are visualized.

4 Discussion and Conclusion

To the best of our knowledge, we are the first to show that multi-label semantic
segmentation can be performed with a capsule based network architecture. The
only other capsule based segmentation network proposed in the literature, i.e.
SegCaps-Net [4], showed promising results but solely for binary lung segmenta-
tion when applied on a dataset of thoracic 2D CT slices. We tested their code
within our framework on the JSRT dataset adapted for a binary segmentation
task by setting left and right lung as foreground. This resulted in a Dice score of
95.38%, which is a competitive result when compared to state-of-the-art methods
like the U-Net (see left and right lungs in Table 1). However, a direct extension
of the SegCaps-Net to the multi-label segmentation task did not achieve satis-
factory results, although we tested two different loss functions and compensated
class label imbalances present in the JSRT dataset through the use of weighted
loss functions.
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(a) GT (b) 96.56% (c) 95.84%

(d) GT (e) 95.71% (f) 95.87%

(g) GT (h) 93.90% (i) 93.71%

(j) GT (k) 94.28% (l) 92.47%

Fig. 3: Example images for the JSRT dataset. Left images show the groundtruth
labels (GT), center images show results and mean Dice scores of our U-Net imple-
mentation and right images show results and mean Dice scores of our proposed
Matwo-SegCaps.
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Using the same appearance vector encoding and dynamic routing mechanism
as in [10], but by introducing a pose matrix and by extending the SegCaps ar-
chitecture, we show how to successfully apply the capsule concept to multi-label
segmentation (see MatVec-CapsNet Or in Table 1). Simultaneously, the experi-
ment shows that this performance is possible with a heavily reduced amount of
network parameters as compared to SegCaps. Further, by replacing the routing
mechanism used in [4, 10] with our proposed Dual Routing (MatVec-CapsNet
Dr), we show that performance can be improved, especially for small anatomical
structures, i.e. the clavicles. Finally, we receive our best results with the Matwo-
CapsNet architecture, which additionally encodes the appearance information
as a matrix instead of a vector. These results are very close to our heavily opti-
mized U-Net implementation and both U-Net and Matwo-CapsNet outperform
the currently best reported results on the JSRT dataset for images with the
same resolution [7], while solely requiring a fraction of the network parameters.
Our qualitative results presented in Fig. 3, show that both U-Net and Matwo-
CapsNet have limitations with small structures like the right clavicle in (f) or
the top of the right lung in (h) as well as with challenging pathological cases like
the bottom of the left lung in (k) and (l).

In conclusion, our work has shown that representing appearance and pose
information as matrix encodings, as well as combining both kinds of information
using our novel Dual Routing mechanism, enables capsule based architectures
to be used for multi-label segmentation. Moreover, we introduce a novel state-
of-the-art U-Net architecture for multi-label segmentation of the JSRT dataset,
which is highly optimized regarding its number of parameters. We compare our
proposed capsule network with this architecture and demonstrate results that are
in line for the multi-label segmentation task with a similar number of parameters.
In future work, we will explore different, more complex routing schemes, e.g.
EM-routing [3], and extend our Matwo-CapsNet to volumetric data.
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